Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Ulrich Flörke,* Thorsten Röder and Thomas Kramer

Fakultät für Naturwissenschaften, Department Chemie, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany

Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.116$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 4-oxahepta-1,6-diene-2,6-dicarboxylate

The crystal packing in the title compound, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}$, is determined by various weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that result in parallel sheets of molecules stacked along [010].

Comment

The title compound, (I), is interesting due to its high functionality. It can be used as a polymerizing agent, not only on its own, but also as a crosslinker. Although (I) has been well known for several years (Drewes et al., 1987), this is the first crystallographic determination.

(I)

The molecular structure of (I) shows non-crystallographic $C_{2 v}$ symmetry, with atom O 3 as its centre. The molecule is almost planar, with maximum deviations of -0.158 (1) \AA for O4 and 0.120 (1) \AA for O 3 from the mean plane of all the atoms. The torsion angles $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{O} 2-\mathrm{C} 2-$ $\mathrm{C} 9-\mathrm{O} 4$ have values of 2.6 (1) and $9.4(1)^{\circ}$, respectively. Bond lengths and angles are in good agreement with those reported for related structures (Rohrer et al., 1984; Steurer \& Podlech, 1999). The crystal structure shows complex patterns of weak hydrogen bonding (Fig. 2). The $\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4(x, y, z+1)$ bridges of $2.44 \AA$ (angle at H of 160°) lead to infinite chains of molecules along [001]. Additional $\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O} 2(x-1, y, z)$ bridges of $2.53 \AA$ (angle at H of 138°) in the [100] direction link these chains into sheets, which are then stacked parallel along [010] with $\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{O} 2(-x+2,-y,-z+2)$ and $\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{O} 5(-x,-y+1,-z+1)$ contacts of $2.56 \AA$ (angle at H of 152°) and $2.60 \AA$ (angle at H of 142°), respectively. All these geometric parameters are normalized for $\mathrm{C}-$ $\mathrm{H}=1.08 \AA$.

Experimental

The compound was prepared according to a method already described in the literature (Drewes et al., 1987). After evaporation of the solvent, fine crystal plate were obtained and analysed via X-ray analysis. Furthermore NMR spectra were recorded on a Bruker AMX 300. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): $\delta=3.77$ (s, $\left.6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.55\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 5.90$ and $6.33(\mathrm{~m}, 4 \mathrm{H}, 2 \times$ $=\mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=51.67\left(q, 2 \times \mathrm{OCH}_{3}\right), 68.65$ $\left(t, 2 \times \mathrm{CH}_{2}\right), 125.89\left(t, 2 \times \mathrm{CH}_{2}\right), 136.63(s, 2 \times=\mathrm{C}), 166.03(s, 2 \times$ $\mathrm{C}=\mathrm{O}$).

Received 23 October 2002 Accepted 31 October 2002 Online 8 November 2002

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}$	$Z=2$
$M_{r}=214.21$	$D_{x}=1.315 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.8104(13) \AA$	Cell parameters from 1575
$b=7.1777(14) \AA$	reflections
$c=12.458(3) \AA$	$\theta=3.1-28.2^{\circ}$
$\alpha=74.713(3)^{\circ}$	$\mu=0.11 \mathrm{~mm}^{\circ}$
$\beta=78.365(4)^{\circ}$	$T=153(2) \mathrm{K}$
$\gamma=67.939(3)^{\circ}$	Plate, colorless
$V=540.84(18) \AA^{\circ}$	$0.50 \times 0.50 \times 0.10 \mathrm{~mm}$

Data collection
SMART APEX CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.889, T_{\text {max }}=0.931$
3269 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.116$
$S=1.05$
2342 reflections
138 parameters
$Z=2$
$D_{x}=1.315 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1575
reflections
$\theta=3.1-28.2^{\circ}$
$T=0.11 \mathrm{~mm}$
Plate, colorless
$0.50 \times 0.50 \times 0.10 \mathrm{~mm}$

2342 independent reflections
1880 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-7 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-14 \rightarrow 15$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

O1-C2	$1.3447(13)$	O5-C10	$1.4549(14)$
O1-C1	$1.4524(13)$	C2-C3	$1.4911(14)$
O2-C2	$1.2151(13)$	C3-C4	$1.3293(15)$
O3-C6	$1.4212(13)$	C3-C5	$1.5016(15)$
O3-C5	$1.4230(13)$	C6-C7	$1.5023(15)$
O4-C9	$1.2093(14)$	C7-C8	$1.3308(16)$
O5-C9	$1.3416(13)$	C7-C9	$1.4949(15)$
C2-O1-C1	$115.15(9)$	O3-C5-C3	$110.04(8)$
C6-O3-C5	$110.40(8)$	O3-C6-C7	$109.70(8)$
C9-O5-C10	$115.18(9)$	C8-C7-C9	$122.51(10)$
O2-C2-O1	$123.04(10)$	C8-C7-C6	$124.25(10)$
O2-C2-C3	$123.25(10)$	C9-C7-C6	$113.22(9)$
O1-C2-C3	$113.71(9)$	O4-C9-O5	$123.20(10)$
C4-C3-C2	$122.70(10)$	O4-C9-C7	$123.12(10)$
C4-C3-C5	$124.47(10)$	O5-C9-C7	$113.68(9)$
C2-C3-C5	$112.82(9)$		

All H atoms were included in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (for $s p^{2} \mathrm{H}$ atoms), 0.99 (for $s p^{3} \mathrm{H}$ atoms) and $0.98 \AA$ (for methyl $s p^{3} \mathrm{H}$ atoms). The H atoms were then included in the

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing diagram, viewed along [100]. Hydrogen bonding is indicated by dashed lines.
refinement, riding on their parent atoms, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (or $1.5 U_{\text {eq }}$ for methyl H atoms).

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART. Version 5.625. Bruker AXS GmbH, Karlsruhe, Germany.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS GmbH, Karlsruhe, Germany.
Bruker (2000). SAINT. Version 6.02a. Bruker AXS GmbH, Karlsruhe, Germany.
Drewes, S., Loizou, G. \& Roos, G. (1987). Synth. Commun. 17, 291-298.
Rohrer, D. C., Kihara, M., Detto, T., Rathore, H., Ahmed, K., From, A. H. L. \& Fullerton, D. S. (1984). J. Am. Chem. Soc. 106, 8269-8276.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Steurer, S. \& Podlech, J. (1999). Eur. J. Org. Chem. pp. 1551-1560.

